Mark schemes

Q1.

```
5}\mp@subsup{}{}{2}\mathrm{ and 12 2 seen oe
25 and 144 or 169
```

$\sqrt{ }(25+144)$ or $\sqrt{ } 169$
either 25 or 144 correct

13
Condone scale drawing with answer 13

Q2.

```
6}\mp@subsup{6}{}{2}+\mp@subsup{8}{}{2
or 36+64
or }10
or 8}\mp@subsup{8}{}{2}-\mp@subsup{6}{}{2
or 6}\mp@subsup{6}{}{2}+\mp@subsup{8}{}{2}-2\times6\times8\times\operatorname{cos}9
                            3,4,5 seen
                        If 6}\mp@subsup{6}{}{2}+\mp@subsup{8}{}{2}\mathrm{ used in cosine rule must be correct
```

$\sqrt{6^{2}+8^{2}}$
or $\sqrt{\text { their } 36+\text { their } 64}$
or $\sqrt{100}$
oe
$\frac{5 \times 6}{3}$
or $\frac{5 \times 8}{4}$

10
10 no working is full marks

## Additional Guidance

Scale drawing is M0
$(3,4,5) \times 2=(6,8,10)$
M1, M1dep, A1
$\sqrt{6^{2}+8^{2}}=\sqrt{110}=10.5$
M1, M1dep, A0
$6^{2}+8^{2}-2 \times 6 \times 8 \times \cos 90$
100-96
M1, M0dep
$6^{2}+8^{2}-6 \times 8 \times \cos 90$
$\sqrt{6^{2}+8^{2}}=$
$\sqrt{6^{2}}+\sqrt{8^{2}}=6+8=14$
$6^{2}+8^{2}=12+16=28$
$6 \times 8 \div 2=24$
$24-8-6=10$
Correct answer but from wrong method

## Q3.

## Alternative method 1

6 stated or shown on diagram as length from $A$ to intersection of $A B$ and horizontal line from $D$.

Maybe on diagram
$10^{2}-$ their $6^{2}$ or 64 or $(B C)^{2}+6^{2}=10^{2}$
their 6 is the length from $A$ to intersection of $A B$ and horizontal line from $D$.
$10^{2}+$ their $6^{2}$ or 136
$\sqrt{ }$ their 64
64 must come from $10^{2}$ - their $6^{2}$
M1dep
8
8 with no working MO

## Alternative method 2

6 stated or shown on diagram as length from $A$ to intersection of $A B$ and horizontal line from $D$.

Maybe on diagram
B1
3, 4, 5 Pythagorean triple shown

6, 8 shown or stated

8
8 with no working MO




Use of cos rule. If left with cos 90 M0


$$
10^{2}=x^{2}+6^{2}-2 \times 6 \times x \times \cos 90
$$

Q4.
Alternative method 1
$6^{2}+6^{2}$
or $36+36$
or 72

$$
\begin{array}{r}
\sqrt{6^{2}+6^{2}} \text { or } \sqrt{72} \\
\text { oe }
\end{array}
$$

$$
\sqrt{72}<10
$$

oe
eg $\sqrt{72}$ is between 8 and 9

## Alternative method 2

$$
\begin{aligned}
& 3^{2}+3^{2} \\
& \text { or } 9+9 \\
& \text { or } 18
\end{aligned}
$$

$$
\sqrt{3^{2}+3^{2}} \text { or } \sqrt{18}
$$

oe
$\sqrt{18}<5$
oe
eg $\sqrt{18}$ is between 4 and 5

## Q5.

$25^{2}+43^{2}$

$$
43^{2}-25^{2}
$$

$\sqrt{ }$ their 2474
$49.7 \ldots$

$$
\text { Accept } 50 \text { with working }
$$

Q6.
$8^{2}$ and $3^{2}$ seen or $8 \times 8$ and $3 \times 3$ seen or 64 and 9 seen or 55
$\sqrt{8^{2}-3^{2}}$ or $\sqrt{64-9}$ or $\sqrt{55}$
M2 for $\sin ^{-1}\left(\frac{3}{8}\right)=22 .(\ldots)$ and $8 \cos ($ their $22 .(\ldots))$
or $\cos ^{-1}\left(\frac{3}{8}\right)=67 .(\ldots)$ or 68 and 8 sin (their $\left.67 .(\ldots)\right)$
[7.4, 7.42]

## Additional Guidance

$\sqrt{8^{2}+3^{2}}$ or $\sqrt{64+9}$ or $8^{2}+3^{2}$ or $64+9$

Only $\sqrt{73}$ or only 73 or only $8.5 \ldots$

If trigonometry used it must be a fully correct method that would lead to the correct value of $x$

Partial method using trigonometry

Ignore units given
$8 \mathrm{~cm}^{2}$ is not $8^{2}$ unless recovered
Correct answer in range seen, ignore further work if truncates or rounds
$8^{2}=16$ and $3^{2}=6, \sqrt{16-6}$

Scale drawing with answer in range [7.4, 7.42]

Scale drawing with answer not in range [7.4, 7.42]

Q7.
$8.2^{2}+3.5^{2}$ or 79.49
$\sqrt{8.2^{2}+3.5^{2}}$
8.9(...)

Accept 9 with working shown

Q8.
Alternative method 1
6 and 10 seen
$(\text { their } 6)^{2}+(\text { their } 10)^{2}$ or 136
[11.66, 11.7] or $\sqrt{136}$ or $2 \sqrt{34}$

## Alternative method 2

$12^{2}+20^{2}$ or 544
$\sqrt{\text { their } 544}$ or $4 \sqrt{34}$
or [23.32, 23.324]
$[11.66,11.7]$ or $\frac{\sqrt{544}}{2}$ or $\sqrt{136}$
or $2 \sqrt{34}$

Q9.

$$
\begin{aligned}
& \text { Alternative method } 1 \\
& 6.25^{2}+15^{2} \\
& \text { or } 39(.0625)+225 \\
& \text { or 264(.0625) } \\
& \text { 5, 12, } 13 \text { seen } \\
& \sqrt{6.25^{2}+15^{2}} \\
& \text { or } \sqrt{39(.0625)+225} \\
& \text { or } \sqrt{264(.0625)} \\
& \text { oe } \\
& \frac{13}{5} \times 6.25 \\
& \text { or } \frac{13}{12} \times 15
\end{aligned}
$$

[16.2, 16.3]
Allow 16 with working shown

Alternative method 2

$$
\begin{aligned}
& \tan ^{-1} \frac{6.25}{15} \text { or } 22.6 \ldots \\
& \text { or } \tan ^{-1} \frac{15}{6.25} \text { or } 67.38 \ldots
\end{aligned}
$$

$\frac{15}{\cos \text { their } 22.6}$
or $\frac{15}{\sin \text { their } 67.38}$
or $\frac{6.25}{\text { sin their } 22.6}$
or $\frac{6.25}{\cos \text { their } 67.38}$

## M1dep

[16.2, 16.3]
Allow 16 with working shown
A1

Q10.
$8^{2}$ or $4^{2}$ or 64 or 16 or 80 or $\left(-8^{2}\right)$ or $\left(-4^{2}\right)$
$\sqrt{\text { their } 8^{2}+\text { their } 4^{2}}$
M1Dep
8.944(...) or $\sqrt{80}$
oe e.g. $4 \sqrt{5}$
This mark is implied by 8.94
8.94
ft From any value $>3 s f$ seen or any value given as a surd that is rounded to 3sf

## Q11.

$5^{2}+9^{2}$
or $25+81$
or 106
$\sqrt{5^{2}+9^{2}}$
or $\sqrt{25+81}$
or $\sqrt{106}$
10.29...
10.3
ft their 2 d.p. answer

Q12.
$\left(A C^{2}=\right) 23^{2}+31^{2}(=1490)$
$\sqrt{23^{2}+31^{2}}$
or
$\sqrt{\text { their } 1490}$
38.6(...) or 39

Q13.
$\left(A B^{2}=\right) 9^{2}+7^{2}(=130)$
$\sqrt{9^{2}+7^{2}}$ or $\sqrt{\text { their } 130}$
11.4(...)

Q14.
$18^{2}$ and $12^{2}$ seen oe or 324 and 144 or 180

